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Figure 1: Simulation of a flue pipe using 20 workstations 

in a (5 x 4) decomposition. 

1    Introduction 

An effective approach of simulating fluid dynamics on a 

cluster of non-dedicated workstations is presented. Con- 

currency is achieved by decomposing the simulated area 

into rectangular subregions, and by assigning the sub- 

regions to parallel subprocesses. The use of local in- 

teraction methods, namely explicit numerical methods, 

leads to small communication requirements. The paral- 

lel subprocesses automatically migrate from busy hosts 

to free hosts in order to exploit the unused cycles of 

non-dedicated workstations, and to avoid disturbing the 

regular users of the workstations. The system is straight- 

forwardly implemented on top of UNIX and TCP/IP 

communication routines. 

Typical simulations achieve 80% parallel efficiency 

(speedup/processors) using 20 HP-Apollo workstations 

in a cluster where there are 25 non-dedicated worksta- 

tions total. Detailed measurements of efficiency in sim- 

ulating two and three-dimensional flows are presented, 

and a theoretical model of efficiency is developed which 

fits closely the measurements. Two numerical methods 

of fluid dynamics are tested: finite differences and the 

lattice Boltzmann method. Further, it is shown that 

the shared-bus Ethernet network is adequate for two- 

dimensional simulations of fluid dynamics, but limited 

for three-dimensional ones. It is expected that new tech- 

nologies in the near future such as Ethernet switches. 

FDDI and ATM networks will make practical three- 

dimensional simulations of fluid dynamics on a cluster 

of workstations. 

The present approach is well-suited for simulating sub- 

sonic flow problems which involve both hydrodynamics 

and acoustic waves; for example, the flow of air inside 

wind musical instruments. This is because such prob- 

lems favor the use of explicit numerical methods versus 

implicit ones, as explained below and in section 6. The 

use of explicit methods is desirable for parallel comput- 

ing on a cluster of workstations because explicit methods 

have small communication requirements. Thus, there is 

a good match between the nature of the problem, the 

use of explicit methods, and the parallel system. 

The choice between explicit and implicit numerical 

methods is a recurring theme in scientific computing. 

Explicit methods are local, ideally scalable, and require 

small integration time steps in order to remain numer- 

ically stable. By contrast, implicit methods are chal- 

lenging to parallelize, have large communication require- 

ments, but they can use much larger integration time 

steps than explicit methods. Because of these differ- 

ences between explicit and implicit methods, the deci- 

sion which method to use depends on the available com- 

puter system, and on the requirements of the problem on 

the integration time step. For instance, the simulation 

of subsonic flow requires small integration time steps in 

order to follow the fast-moving acoustic waves. Thus, 

subsonic flow is a good problem for explicit methods. 

1.1     Comparison with other work 

The suitability of local interaction algorithms for parallel 

computing on a cluster of workstations has been demon- 

strated in previous works, such as [1], [2], and elsewhere. 

Cap&Strumpen [1] present the PARFORM system and 

simulate the unsteady heat equation using explicit fi- 

nite differences. Chase&et al. [2] present the AMBER 

parallel system, and solve Laplace's equation using Suc- 

cessive Over-Relaxation. The present work emphasizes 

and clarifies further the importance of local interaction 

methods for parallel systems with small communication 

capacity. Furthermore, a real problem of science and 

engineering is solved using the present approach. The 

problem is the simulation of subsonic flow with acoustic 

waves inside wind musical instruments. 

In the fluid dynamics community, very little atten- 

tion has been given to simulations of subsonic flow with 

acoustic waves. The reason is that such simulations 
are very compute-intensive, and can be performed only 

when parallel systems such as the one described here 
are available.   Further, the fluid dynamics community 



has generally shunned the use of explicit methods until 

recently because explicit methods require small integra- 

tion time steps to remain numerically stable. With the 

increasing availability of parallel systems, explicit meth- 

ods are slowly attracting more attention. The present 

work clearly reveals the power of explicit methods in one 

particular example, and should motivate further work in 

this direction. 

Regarding the experimental measurements of parallel 

efficiency which are presented in section 7, they are more 

detailed than in any other reference known to the author, 

especially for the case of a shared-bus Ethernet network. 

The model of parallel efficiency which is discussed in 

section 8 is based on ideas which have been discussed 

previously, for example in Fox et al. [3] and elsewhere. 

Here, the model is derived in a clear and direct way, 

and moreover the predictions of the model are compared 

against experimental measurements of parallel efficiency. 

Regarding the problem of using non-dedicated work- 

stations, the present approach solves the problem by 

employing automatic process migration from busy hosts 

to free hosts. An alternative approach that has been 

used elsewhere is the dynamic allocation of processor 

workload. In the present context, dynamic allocation 

means to enlarge and to shrink the subregions which 

are assigned to each workstation depending on the CPU 

load of the workstation (Cap&Strumpen [1]). Although 

this approach is important in various applications (Blu- 

mofe&Park [4]), it seems unnecessary for simulating fluid 

flow problems with static geometry. For such problems, 

it may be simpler and more effective to use fixed size sub- 

regions per processor, and to use automatic migration of 

processes from busy hosts to free hosts. The latter ap- 

proach has worked very well in the parallel simulations 

presented here. 

Regarding the design of parallel simulation systems, 

the present work aims for simplicity. In particular, 

the special constraints of local interaction problems and 

static decomposition have guided the design of the par- 

allel system. The automatic migration of processes has 

been implemented in a straightforward manner because 

the system is very simple. The availability of a homoge- 

neous cluster of workstations, and a common file system 

have also simplified the implementation, which is based 

on UNIX and TCP/IP communication routines. The ap- 

proach presented here works well for spatially-organized 

computations which employ a static decomposition and 

local interaction algorithms. 

The approach presented here does not deal with is- 

sues such as high-level distributed programming, paral- 

lel languages, inhomogeneous clusters, and distributed 

computing of general problems. Efforts along these di- 

rections are the PVM system (Sunderam [5]), the Linda 

system (Carriero [6]), the packages of (Kohn&Baden [7]) 

and (Chesshire&Naik [8]) that facilitate a parallel de- 

composition, the Orca language for distributed comput- 

ing (Bal&et al. [9]), etc. 

1.2     Outline 

Section 2 presents some examples of parallel simulations 

which demonstrate the power of the present approach, 

and also help to motivate the subsequent sections. Sec- 

tion 3 reviews parallel computing and local interaction 

problems in general. Sections 4 and 5 describe the im- 

plementation of the parallel simulation system, including 

the automatic migration of processes from busy hosts to 

free hosts. Section 6 explains the parallelization of nu- 

merical methods for fluid dynamics. Finally, sections 7 

and 8 present experimental measurements of the perfor- 

mance of the parallel system, and develop a theoretical 

model of parallel efficiency for local interaction problems 

which fits well the measured efficiency. Most ideas are 

discussed as generally as possible within the context of 

local interaction problems, and the specifics of fluid dy- 

namics are limited to section 2 and section 6. 

2    Examples of flow simulations 

The parallel system has been successfully applied to sim- 

ulate the flow of air inside flue pipes of wind musical in- 

struments such as the organ, the recorder, and the flute. 

This is a phenomenon that involves the interaction be- 

tween hydrodynamic flow and acoustic waves: When a 

jet of air impinges a sharp obstacle in the vicinity of a 

resonant cavity, the jet begins to oscillate strongly, and 

it produces audible musical tones. The jet oscillations 

are reenforced by a nonlinear feedback from the acoustic 

waves to the jet. Similar phenomena occur in human 

whistling and in voicing of fricative consonants (Sha- 

dle [10]). Although sound-producing jets have been stud- 

ied for more than a hundred years, they remain the sub- 

ject of active research (Verge94 [11, 12], Hirschberg [13]) 

because they are very complex. 

Using our distributed system we can simulate jets   (Jog^ 

of air inside flue pipes using uniform orthogonal grids  ;y^fj» 
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Figure 2: Simulation of a flue pipe using 15 workstations 

in a (6 x 4) decomposition with 9 subregions inactive. 

as large as 1200 x 1200 in two dimensions (1.5 million 

nodes). We typically employ smaller grids, however, 

such as 800 x 500 (0.38 million nodes) in order to re- 

duce the computing time. For example, if we divide a 

800 x 500 grid into twenty subregions and assign each 

subregion to a different HP9000/700 workstation, we can 
compute 70,000 integration steps in 12 hours of run time. 

This produces about 12 milliseconds of simulated time, 

which is long enough to observe the initial response of a 

flue pipe with a jet of air that oscillates at 1000 cycles 

per second. 

Figure 1 shows a snapshot of a 800 x 500 simulation 

of a flue pipe by plotting equi-vorticity contours (the 

curl of fluid velocity). The decomposition of the two- 

dimensional space (5x4) = 20 is shown as dashed lines 

superimposed on top of the physical region. The gray 

areas are walls, and the dark-gray areas are walls that 

enclose the simulated region and demarcate the inlet and 

the outlet. The jet of air enters from an opening on the 

left wall, impinges the sharp edge in front of it, and it 

eventually exits from the simulation through the opening 

on the right part of the picture. The resonant pipe is 

located at the bottom part of the picture. 

Figure 2 shows a snapshot of another simulation that 

uses a slightly different geometry than figure 1. In par- 

ticular, figure 2 includes a long channel through which 

the jet of air must pass before impinging the sharp edge. 

Also, the outlet of the simulation is located at the top of 

the picture as opposed to the right. This is convenient 

because the air tends to move upwards after impinging 

the sharp edge. Overall, figure 2 is a more realistic model 

of flue pipes than figure 1. 

From a computational point of view the geometry of 

figure 2 is interesting because there are subregions that 

are entirely gray, i.e. they are entirely solid walls. Con- 

sequently, we do not need to assign these subregions to 

any workstation. Thus, although the decomposition is 

(6 x 4) = 24 , we only employ 15 workstations for this 

problem. In terms of the number of grid nodes, the full 

rectangular grid is 1107 x 700 or 0.7 million nodes, but 

we only simulate 15/24 of the total nodes or 0.48 million 

nodes. This example shows that an appropriate decom- 

position of the problem can reduce the computational 

effort in some cases, as well as provide opportunities for 

parallelism. More sophisticated decompositions can be 

even more economical than ours; however, we prefer to 

use uniform decompositions and identical-shaped sub- 

regions in our current implementation for the sake of 

simplicity. 

We have performed all of the above simulations us- 

ing the lattice Boltzmann numerical method. We will 

describe further this method and other issues of fluid 

dynamics in section 6. Next, we review the basics of 

local interaction problems, and we describe the imple- 
mentation of our distributed system. These issues are 

important for understanding in detail how our system 

works and why it works well. 

3    Local interaction computations 

We define a local interaction computation as a set of 

"parallel nodes" that can be positioned in space so that 

the nodes interact only with neighboring nodes. For ex- 

ample, figure 3 shows a two-dimensional space of parallel 

nodes connected with solid lines which represent the lo- 

cal interactions. In this example, the interactions extend 

to a distance of one neighbor, and have the shape of a 

star stencil, but other patterns of local interactions are 

also possible. Figure 4 shows two typical interactions 

which extend to a distance of one neighbor, a star sten- 

cil and a full stencil. 

The parallel nodes of a local interaction problem are 

the finest grain of parallelism that is available in the 

problem; namely, they are the finest decomposition of 

the problem into units that can evolve in parallel af- 

ter communication of information with their neighbors. 

In practice, the parallel nodes are usually grouped into 

subregions of nodes, as shown in figure 3 by the dashed 
lines.  Each subregion is assigned to a different proces- 



Figure 3: A problem of local interactions in two dimen- 

sions, and its decomposition (2x2) into four subregions. 

sor, and the problem is solved in parallel by executing 

the following sequence of steps repeatedly. 

• Calculate the new state of the interior of the sub- 

region using the previous history of the interior as 

well as the current boundary information from the 

neighboring subregions. 

• Communicate boundary information with the 

neighboring subregions in order to prepare for the 

next local calculation. 

The boundary which is communicated between neigh- 

boring subregions is the outer surface of the subregions. 

Section 4.2 describes a good way of organizing this com- 

munication. 

Local interaction problems are ideal for parallel com- 

puting because the communication is local, and also be- 

cause the amount of communication relative to computa- 

tion can be controlled by varying the decomposition. In 

particular, when each subregion is as small as one node 

(one processor per node), there is maximum parallelism, 

and a lot of communication relative to the computation 

of each processor. As the size of each subregion increases 

(which is called "coarse-graining"), both the parallelism 

and the the amount of communication relative to com- 

putation decrease. This is because only the surface of 

a subregion communicates with other subregions. Even- 

tually, when one subregion includes all the nodes in the 

problem, there is no parallelism and no need for commu- 

Figure 4: A star stencil and a full stencil represent two 

typical nearest neighbor local interactions. 

nication anymore. Somewhere between these extremes, 

we often find a good match between the size of the subre- 

gion (the "parallel grain size") and the communication 

capabilities of the computing system. This is the rea- 

son why local interaction problems are very flexible and 

highly desirable for parallel computing. 

4    The distributed system 

The design of our system follows the basic ideas of local 

interaction parallel computing that we discussed above. 

In this section, we describe an implementation which is 

based on UNIX and TCP/IP communication routines. 

Our implementation also exploits the common file sys- 

tem of the workstations. 

4.1     The main modules 

For the sake of programming modularity, we organize 

our system into the following four modules: 

• The initialization program produces the initial state 

of the problem to be solved as if there was only one 

workstation. 

• The decomposition program decomposes the initial 

state into subregions, generates local states for each 

subregion, and saves them in separate files, called 

"dump files". These files contain all the information 

that is needed by a workstation to participate in a 

distributed computation. 

• The job-submit program finds free workstations in 

the cluster, and begins a parallel subprocess on each 

workstation. It provides each process with a dump 

file that specifies one subregion of the problem. The 

processes execute the same program on different 

data. 



• The monitoring program checks every few minutes 

whether the parallel processes are progressing cor- 

rectly. If an unrecoverable error occurs, the dis- 

tributed simulation is stopped, and a new simula- 

tion is started from the last state which is saved 

automatically every 10 — 20 minutes. If a worksta- 

tion becomes too busy, automatic migration of the 

affected process takes place, as we explain in sec- 

tion 5. 

All of the above programs (initialization, decomposition, 

submit, and monitoring) are performed by one desig- 

nated workstation in the cluster. Although it is possible 

to perform the initialization and the decomposition in a 

distributed fashion in principle, we have chosen a serial 

approach for simplicity. 

Regarding the selection of free workstations, our strat- 

egy is to separate all the workstations into two groups: 

workstations with active users, and workstations with 

idle users (meaning more than 20 minutes idle time). 

An idle-user does not necessarily imply an idle worksta- 

tion because background jobs may be running; however, 

an idle-user is preferred to an active user. Thus, we first 

examine the idle-user workstations to see if the fifteen- 

minute average of the CPU load is below a pre-set value, 

in which case the workstation is selected. For example, 

the load must be less than 0.6 where 1.0 means that a 

full-time process is running on the workstation. After 

examining the idle-user workstations, we examine the 

active-user workstations, and we continue the search as 

long as we need more workstations. 

In addition to the above programs (initialization, de- 

composition, submit, and monitoring), there is also the 

parallel program which is executed by all the worksta- 

tions. The parallel program consists of two steps: "com- 

pute locally", and "communicate with neighbors". Be- 

low we discuss issues relating to communication. 

4.2    Communication 

The communication between parallel processes synchro- 
nizes the processes in an indirect fashion because it en- 

courages the processes to begin each computational cy- 

cle together with their neighbors as soon as they re- 

ceive data from their neighbors. Thus, there is a lo- 

cal near-synchronization which also encourages a global 
near-synchronization. However, neither local nor global 

synchronization is guaranteed, and in special circum- 

stances the parallel processes can be several integration 

time steps apart. This is important when a process mi- 

grates from a busy host to a free host, as we explain in 

section 5 (also see the appendix). 

We organize the communication of data between pro- 

cesses by using a well-known programming technique 

which is called "padding" or "ghost cells" (Fox [3], 

Camp [14]). Specifically, we pad each subregion with 

one or more layers of extra nodes on the outside. We 

use one layer of nodes if the local interaction extends to 

a distance of one neighbor, and we use more layers if the 

local interaction extends further. Once we copy the data 

from one subregion onto the padded area of a neighbor- 

ing subregion, the boundary values are available locally 

during the current cycle of the computation. This is a 

good way to organize the communication of boundary 

values between neighboring subregions. 

In addition, padding leads to programming modular- 

ity in the sense that the computation does not need to 

know anything about the communication of the bound- 

ary. As long as we compute within the interior of each 

subregion, the computation can proceed as if there was 

no communication at all. Because of this separation be- 

tween computation and communication, we can develop 

a parallel program as a straightforward extension of a 

serial program. In our case, we have developed a fluid 

dynamics code which can produce either a parallel pro- 

gram or a serial program depending on the settings of a 

few C-compiler directives. The main differences between 

the parallel and the serial programs are the padded areas, 

and a subroutine that communicates the padded areas 

between processes. 

We have implemented a subroutine that communicates 

the padded areas between processes using "sockets" and 

the TCP/IP protocol. A socket is an abstraction in the 

UNIX operating system that provides system calls to 

send and receive data between UNIX processes on differ- 

ent workstations. A number of different protocols (types 

of behavior) are available with sockets, and TCP/IP is 

the simplest one. This is because the TCP/IP protocol 
guarantees delivery of any messages sent between two 

processes. Accordingly, the TCP/IP protocol behaves 

as if there are two first-in-first-out channels for writ- 

ing data in each direction between two processes. Also, 

once a TCP/IP channel is opened at startup, it remains 
open throughout the computation except during migra- 

tion when it must be re-opened, as we shall see later. 

Opening the TCP/IP channel involves a simple hand- 



shaking, ''I am listening at this port number. I want to 

talk to you at this port number? Okay, the channel is 

open." The port numbers are needed to identify uniquely 

the sender and the recipient of a message so that mes- 

sages do not get mixed up between different UNIX pro- 

cesses. Further, the port numbers must be known in 

advance before the TCP/IP channel is opened. Thus, 

each process must first allocate its port numbers for lis- 

tening to its neighbors, and then write the port numbers 

into a shared file. The neighbors must read the shared 

file before they can connect using TCP/IP. 

5    Transparency to other users 

Having described the basic operation of our distributed 

system, we now discuss the issues that arise when sharing 

the workstations with other users. Specifically, there are 

two issues to consider: sharing the CPU cycles of each 

workstation, and sharing the local area network and the 

file server. First, we describe the sharing of CPU cy- 

cles and the automatic migration of processes from busy 

hosts to free hosts. 

5.1    Automatic migration of processes 

We distinguish the utilization of a workstation into three 

basic categories: 

• (i) The workstation is idle. 

• (ii) The workstation is running an interactive pro- 

gram that requires fast CPU response and few CPU 

cycles. 

• (iii) The workstation is running another full-time 

process in addition to a parallel subprocess. 

In the first two cases, it is appropriate to time-share the 

workstation with another user. Furthermore, it is pos- 

sible to make the distributed computation transparent 

to the regular user of the workstation by assigning a 

low runtime priority to the parallel subprocesses (UNIX 

command "nice"). Because the regular user's tasks run 

at normal priority, they receive the full attention of the 

processor immediately, and there is no loss of interac- 

tiveness. After the user's tasks are serviced, there are 

enough CPU cycles left for the distributed computation. 

In the third case, when a workstation is running an- 

other full-time process in addition to a parallel subpro- 

cess, the parallel subprocess must migrate to a new host 

that is free. This is because the parallel process interferes 

with the regular user, and further, the whole distributed 

computation slows down because of the busy worksta- 

tion. Clearly, such a situation must be avoided. 

Our distributed system detects the need for migration 

using the monitoring program that we mentioned in the 

previous section. The monitoring program checks the 

CPU load of every workstation via the UNIX command 

"uptime", and signals a request for migration if the five- 

minute-average load exceeds a pre-set value, typically 

1.5. The intent is to migrate only if a second full-time 

process is running on the same host, and to avoid mi- 

grating too often. In our system there is typically one 

migration every 45 minutes for a distributed computa- 

tion that uses 20 workstations from a pool of 25 work- 

stations. Also, each migration lasts about 30 seconds. 

Thus, the cost of migration is insignificant because the 

migrations do not happen too often. 

During a migration, a precise sequence of events takes 

place in order for the migration to complete successfully, 

• The affected process A receives a signal to migrate. 

• All the processes get synchronized. 

• Process A saves its state into a dump file, and stops 

running. 

• Process A is restarted on a free host, and the dis- 

tributed computation continues. 

Signals for migration are sent through an interrupt mech- 

anism, "kill -USR2" (see UNIX manual). In this way, 

both the regular user of a workstation and our monitor- 

ing program can request a parallel subprocess to migrate 

at any time. 

The reason for synchronizing all the processes prior to 

migration, is to simplify the restarting of the processes 

after the migration has completed. In addition, the syn- 

chronization allows more than one process to migrate at 

the same time if it is desired. In our system, we use a 

synchronization scheme which instructs all the processes 

to continue running until a chosen synchronization time 

step, and then to pause for the migration to take place. 

The details of the synchronization scheme are described 

in the appendix. 

When all the processes reach the synchronization time 

step, the processes that need to migrate save their state 

and exit, while they notify the monitoring program to 

select free workstations for them. The other parallel pro- 

cesses suspend execution and close their TCP/IP com- 

munication channels. When the monitoring program 

finds free hosts for all the migrating processes, it sends 



a CONT signal to the waiting processes. In response, 

all the processes re-open their communication channels, 

and the distributed computation continues normally. 

Overall, the migration mechanism is designed to be as 

simple as possible. In fact, it is equivalent to stopping 

the computation, saving the entire state on disk, and 

then restarting; except, we only save the state of the 

migrating process on disk. In contrast to this simple 

migration mechanism, we note that process migration in 

a general computing environment such as a distributed 

operating system [15] can be a challenging task. In our 

case the task has been simplified because we can design 

our processes appropriately to accommodate migration 

easily. 

5.2    Sharing the network and file server 

A related issue to sharing the workstations with other 

users, is the sharing of the network and the file server. 

A distributed program must be carefully designed to 

make sure that the system does not monopolize the net- 

work and the file server. Abuse of shared resources is 

very common in today's UNIX operating system because 

there are no direct mechanisms for controlling or limit- 

ing the use of shared resources. Thus, a program such 

as FTP (file transfer) is free to send many megabytes 

of data through the network, and to monopolize the 

network, so that the network appears "frozen" to other 

users. A distributed program can monopolize the net- 

work in a similar way, if it is not designed carefully. 

Our distributed system does not monopolize the net- 

work because it includes a time delay between successive 

send-operations, during which the parallel processes are 

calculating locally. Moreover, the time delay increases 

with the network traffic because the parallel processes 

must wait to receive data before they can start the next 

integration step. Thus, there is an automatic feedback 

mechanism that slows down the distributed computa- 

tion, and allows other users to access the network at the 

same time. 

Another situation to consider is when the parallel 

processes are writing data to the common file system. 

Specifically, when all the parallel processes save their 

state on disk at approximately the same time (a couple 

of megabytes per process), it is very easy to saturate 

both the network and the file server. In order to avoid 

this situation, we impose the constraint that the parallel 

processes must save their state one after the other in an 

orderly fashion, allowing sufficient time gaps between, 

so that other programs can use the network and the file 

system. Thus, a saving operation that would take 30 

seconds and monopolize the shared resources, now takes 

60 — 90 seconds but leaves free time slots for other pro- 

grams to access the shared resources at the same time. 

Overall, a careful design has made our distributed sys- 

tem mostly transparent to the regular users of the work- 

stations. 

6    Fluid dynamics 

Having described the overall design of our distributed 

system, we now turn our attention to the specifics of fluid 

dynamics. First, we review the equations of fluid dynam- 

ics, and then we explain why local interaction methods 

are appropriate for simulating subsonic flow. Finally, we 

outline the numerical methods that we use in our system. 

The evolution of a flow is described using a set of par- 

tial differential equations, known as the Navier Stokes 

equations (Tritton [16], Batchelor [17], Lamb [18]). 

These equations can take different forms depending on 

the specific problem at hand. In our case, the Navier 

Stokes equations involve three fluid variables p,VXtVy: 

the fluid density, and the components of the fluid ve- 

locity in the x,y directions respectively. The variables 

P, Vx, Vy are functions of space and time, and the Navier 
Stokes equations express the rates of change of these 

variables, as follows, 

dP | d{Pvx) | d(pvyj _ 
dt dx dy 

= 0 

dVx dvT 

~df + Vx~dx~ + K 
dVx c2*dP   ,   „Y72T 

8Vy_ 
dt 

dVv 

y dy 
dVv 

pdx 
r.2 

+ 1/VKr 

+ Vx Ox   + Vy  dy  -     pdy + UV Vy 

(1) 

(2) 

(3) 

In the above equations, the symbol V2 is the Laplacian 

operator d2/dx2 + d2/dy2, and the coefficients v and c, 

are constants, v is the kinematic viscosity of the fluid 

(a kind of friction), and c, is the speed of sound. In the 

case of three-dimensional flow problems, there is another 

equation for the Vz the component of fluid velocity in the 

z-direction. Details can be found in any textbook of fluid 

mechanics. 

A flow is simulated by solving the Navier Stokes equa- 

tions numerically. In particular, a grid of fluid nodes is 

introduced, which looks very much like the grid of nodes 

in figure 3. The fluid nodes are discrete locations where 

the fluid variables density and velocity are calculated 



at discrete times. A numerical method is used to cal- 

culate the future values of density and velocity at each 

fluid node using the present and the past values of den- 

sity and velocity at this node, at neighboring nodes, and 

possibly at distant nodes as well. 

A numerical method that employs only neighboring 

nodes to calculate the future solution, is called an ex- 

plicit method lor local interaction method), and is ideal 

for parallel computing. Such a method is also referred to 

as a "time-marching" method because the present values 

of each fluid node and its neighbors produce the future 

value of this fluid node at time t + At, and so on repeat- 

edly, where At is the integration time step. By contrast, 

a numerical method that employs distant nodes to cal- 

culate the future solution, is called an implicit method, 

and is difficult to parallelize. This is because an implicit 

method computes the solution using a large matrix equa- 

tion that couples together distant fluid nodes, and leads 

to complex communication between distant nodes. 

There are advantages to both explicit and implicit 

methods. The obvious advantage of explicit methods is 

the ease of parallelization. Another issue to consider is 

that an explicit integration step is much less costly than 

an implicit integration step. A disadvantage of explicit 

methods is that they become numerically unstable at 

large time steps At. By contrast, implicit methods can 

often use much larger integration time steps At than 

explicit methods (Peyret&Taylor [19]). Thus, implicit 

methods can often compute a solution using fewer time 

steps than explicit methods. In a practical situation, one 

has to consider all of the above issues to decide whether 

implicit or explicit methods are more suitable. Namely, 

one has to consider the relative cost of an implicit step 

versus an explicit step, the availability of parallel com- 

puting, and the nature of the problem which affects the 

choice of a small or a large integration time step. 

In the case of simulating subsonic flow, the nature of 

the problem does not allow the use of very large inte- 

gration time steps At. This is because subsonic flow 

includes two different time-scales - slow-moving hydro- 

dynamic flow and fast-moving acoustic waves - and the 

latter dominate the choice of integration time step. In 

particular, the time step At must be very small to model 

accurately the acoustic waves that propagate through 

the fluid and reflect off obstacles. If Ax is the spacing 

between neighboring fluid nodes, and ca is the speed of 

propagation of acoustic waves, then the product c,At 

must be comparable to Ax in order to have enough res- 

olution to follow the passage and reflection of acoustic 

waves. Thus, we require the relation. 

Ax ,A( (4) 

Because of this requirement, the large time steps of im- 

plicit methods are not relevant. Instead, explicit meth- 

ods are preferable in this case because of their simplicity 

and ease of parallelization. 

In our system, we employ the following two explicit 

methods: explicit finite differences (Peyret&Taylor [19]), 

and the recently-developed lattice Boltzmann method 

(Skordos [20]). The finite difference method is a straight- 

forward discretization of the Navier Stokes equations 1- 

3. Specifically, the spatial derivatives are discretized us- 

ing centered differences on a uniform orthogonal grid, 

and the time derivatives are discretized using forward 

Euler differences (Peyret&Taylor [19]). For the purpose 

of improving numerical stability, the density equation 1 

is updated using the values of velocity at time t + At. 

In other words, the velocities values are computed first, 

and then the density values are computed as a separate 

step. The precise sequence of computational steps for 

the finite difference method is as follows, 

• Calculate Vx, Vy (inner) 

• Communicate: send/recv Vx,Vy (boundary) 

• Calculate p (inner) 

• Communicate: send/recv p (boundary) 

• Filter p, Vx, V'y (inner) 

The filter that is included above is crucial for simulat- 

ing subsonic flow at high Reynolds number (fast moving 

flow). The fast flow and the interaction between acoustic 

waves and hydrodynamic flow can lead to slow-growing 

numerical instabilities. The filter prevents the instabili- 

ties by dissipating high spatial frequencies whose wave- 

length is comparable to the grid mesh size (the distance 

between neighboring fluid nodes). Our filter is based on 

a fourth order numerical viscosity (Peyret&Taylor [19]). 

We use the same filter both for the finite difference 

method and for the lattice Boltzmann method. 

The lattice Boltzmann method is a recently-developed 

method for simulating subsonic flow, which is compet- 

itive with finite differences in terms of numerical accu- 

racy. Because the lattice Boltzmann method is a relax- 

ation type of algorithm, it is somewhat more stable than 

explicit finite differences. The lattice Boltzmann method 



uses two kinds of variables to represent the fluid, the 

traditional fluid variables p, Vx,Vy, and another set of 

variables called populations F,-. During each cycle of the 

computation, the fluid variables p, Vx, Vy are computed 

from the F:-, and then the p, Vx, Vy are used to relax the 

Fi. Subsequently, the relaxed populations are shifted to 

the nearest neighbors of each fluid node, and the cycle 

repeats. The precise sequence of computational steps for 

the lattice Boltzmann method is as follows, 

• Relax Fi (inner) 

• Shift Fi (inner) 

• Communicate: send/recv F,- (boundary) 

• Calculate p, Vx, Vy from F,- (inner) 

• Filter p, Vx, Vy (inner) 

More details on the lattice Boltzmann method can be 

found in Skordos [20]. 

Regarding the communication of boundary values by 

the finite difference method (FD) and the lattice Boltz- 

mann method (LB), there are some differences that will 

become important in the next two sections, when we dis- 

cuss the performance of our parallel simulation system. 

The first difference is that FD sends two messages per 

computational cycle as opposed to LB which sends all 

the boundary data in one message. This results in slower 

communication for FD when the messages are small be- 

cause each message has a significant overhead in a local 

area network. The second difference is that LB commu- 

nicates 5 variables (double precision floating-point num- 

bers) per fluid node in three dimensional problems, while 

FD communicates only 4 variables per fluid node. In 

two dimensional problems, both methods communicate 

3 variables per fluid node. 

7    Experimental measurements of 

performance 

The performance of the parallel simulation system 

is measured when using the finite difference method 

and the lattice Boltzmann method to simulate a well- 

known problem in fluid mechanics, Hagen-Poiseuille flow 

through a rectangular channel (Skordos [20] and Lan- 

dau&Lifshitz [21, p.51]). The goal of testing two differ- 

ent numerical methods is to examine the performance 

of the parallel system on two similar, but slightly differ- 

ent parallel algorithms. The question of which numerical 

method is better for a particular problem is not our main 
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Figure 5: Parallel efficiency in 2D simulations using lat- 

tice Boltzmann. 

concern here. However, we can say that the two meth- 

ods produce comparable results for the same resolution 

in space and time. Moreover, both methods converge 

quadratically with increased resolution in space to the 

exact solution of the Hagen-Poiseuille flow problem. 

Below we present measurements of the parallel effi- 

ciency /, and the speedup S defined as follows, 

5 7\ 
/ = PTV 

(5) 

where Tp is the elapsed time for integrating a problem, 

using P processors, and T\ is the elapsed time for inte- 

grating the same problem using a single processor. We 

measure the times Tp and T\ for integrating a problem 

by averaging over 20 consecutive integration steps, and 

also by averaging over each processor that participates in 

the parallel computation. The resulting average is the 

time interval it takes to perform one integration step. 
We use the UNIX system call "gettimeofday" to obtain 

accurate timings. To avoid situations where the Ether- 

net network is overloaded by a large FTP or something 

else, we repeat each measurement twice, and select the 

best performance. 

We use twenty-five HP9000/700 workstations that are 

connected together by a shared-bus Ethernet network. 

Sixteen of the workstations are 715/50 models, six are 

720 models, and three are 710 models. The 715/50 work- 

stations are based on a Risk processor running at 50 

MHz, and have an estimated performance of 62 MIPS 
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Figure 6:  Parallel speedup in 2D simulations using lat- 

tice Boltzmann. 
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Figure 7: Parallel efficiency in 2D simulations using finite 

differences. 

and 13 MFLOPS, while the 720 and 710 workstations 

have a slightly lower performance. 

For analysis purposes, we define the speed of a work- 

station as the number of fluid nodes integrated per sec- 

ond, where the number of fluid nodes does not include 

the padded areas discussed in section 4.2. The table 

below presents the speed of the workstations for 2D and 

3D simulations using the lattice Boltzmann method (LB) 

and the finite difference method (FD). We have calcu- 

lated these numbers by averaging over simulations of dif- 

ferent size grids that range from 1002 to 3002 fluid nodes 

in 2D, and from 103 to 443 in 3D. Also, we have nor- 

malized the speeds relative to the speed of the 715/50 

workstation, 

LB 2D 

LB 3D 

FD2D 

FD3D 

715/50 

1.0 ±.04 

.51 ±.01 

1.24 ±.1 

1.0±.l 

710 

.84 ±.02 

.40 ±.01 

1.08±.l 

.85 ±.1 

720 
.86 ±.08 

.42 ± .02 

1.17±.l 

.94 ±.1 

The relative speed of 1.0 corresponds to 39132 fluid 

nodes integrated per second. 

In our graphs of parallel speedup and efficiency, we use 

the the 715/50 workstation to represent the single pro- 

cessor performance. We do not use the performance of 

the slowest workstation (the 710 model) for normaliza- 

tion purposes because it would over-estimate the perfor- 

mance of our system. In particular, most of the worksta- 

tions are 715 models, and our strategy is to choose 715 

models first before choosing the slightly slower 710 and 

720 models. We have tested that the speedup achieved 

by sixteen workstations, which are all 715 models, does 

not change if one or two workstations are replaced with 

710 models. Thus, it makes sense to normalize our re- 

sults using the performance of the 715 model. 

Figure 5 shows the efficiency as a function of grain size 

for (2x2), (3x3), (4x4), and (5x4) decompositions (tri- 

angles, crosses, squares, circles). On the horizontal axis, 

we plot the square root of number of nodes N of each 

subregion. We see that good performance is achieved 

in two-dimensional simulations when the subregion per 

processor is larger than 1002 fluid nodes. In the next 

section, we present a theoretical model of parallel ef- 

ficiency that predicts very accurately our experimental 

results shown in figure 5 and in the other figures also. 

Figure 6 shows the speedup for the lattice Boltzmann 

method (LB), and figures 7 and 8 show the efficiency 

and speedup for the finite difference method (FD). 

We notice one difference between the FD and LB ef- 

ficiency curves: the efficiency decreases more rapidly for 

FD than LB as the subregion per processor decreases. 

To understand this difference, we quote a general for- 

mula for the parallel efficiency, which is derived in the 

next section (see equation 12), 

-l 

/ 1 + 
1 calc 

(6) 

10 
where Tcom and Tca\c are the communication and the 
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Figure 8: Parallel speedup in 2D simulations using finite 

differences. 

computation time it takes to perform one integration 

step. We observe that Tca\c is smaller for FD than LB 

(see the table of speeds earlier), and moreover that Tcom 

becomes larger for FD than LB as the subregion per pro- 

cessor decreases. The latter is true because each message 

in a local area network incurs an overhead, and FD com- 

municates two messages per integration step as opposed 

to LB which communicates only one message per inte- 

gration step (see end of section 6). Because of these 

differences between FD and LB, the efficiency decreases 

more rapidly for FD than LB as the subregion per pro- 

cessor decreases. 

Next, we compare the efficiency of three-dimensional 

simulations versus two-dimensional ones, using the lat- 

tice Boltzmanii method. Figure 9 plots the efficiency of 

2D and 3D simulations as a function of the number of 

processors P. Here, we simulate a problem which grows 

linearly with the number of processors P, and is decom- 

posed as (P x 1) in 2D, and as (P x 1 x 1) in 3D. The 

subregion per processor is held fixed at 1202 nodes in 

2D, and 253 nodes in 3D, which are comparable sizes, 

equal to about 14,500 fluid nodes per processor. We 

see that the efficiency remains high in 2D (triangles), 

and decreases quickly in 3D (crosses) as the number of 

processors increases. This is because the total traffic 

through the shared-bus network increases in proportion 

to the number of processors, and this affects Tcom in 

equation 6 as we shall see in more detail in the next sec- 

0 5 10 15 20 
number of processors P 

Figure 9:  The Ethernet network performs well for 2D 

simulations (triangles), but poorly for 3D simulations 

(crosses). 

tion. Also, we note that 3D requires much more data 

to be communicated per step than 2D. Thus, Tcom in- 

creases faster for 3D than 2D, and the efficiency drops 

faster in the case of 3D simulations. 

Another way of examining the efficiency of 3D simula- 

tions is shown in figures 10 and 11. Figure 10 plots the 

efficiency against the size of the subregion for different 

decompositions (2x2x2), (3x2x2), etc. We can 

see that the efficiency is rather poor. Figure 11 plots 

the speedup against the total size of the problem. We 

can see that the speedup does not improve when finer 

decompositions are employed because the network is the 

bottleneck of the computation. 

The results shown in figures 10 and 11 have been ob- 

tained using the lattice Boltzmann method. The par- 

allel efficiency of the finite difference method (FD) in 

3D simulations is even worse than the lattice Boltzmann 

method (LB), and is not shown here. The FD efficiency 

is worse than LB because the FD computes twice as fast 

as LB per integration step (see earlier table of speeds), 

which makes the ratio Tcom/Tcaic larger for FD than LB, 

and leads to lower efficiency according to equation 6. 

We note that in our system the low efficiency of 3D 

simulations is accompanied by frequent network errors 

because of excessive network traffic. In particular, the 

TCP/IP protocol fails to deliver messages after excessive 

retransmissions. Both the low efficiency, and the network 
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Figure 11: Parallel speedup in 3D simulations using the 

lattice Boltzmann method. 

errors indicate the need for a faster network, or dedicated 

connections between neighboring processors in order to 

perform 3D simulations efficiently. 

8    Theoretical analysis of parallel 

efficiency 

In order to understand better the experimental results 

of the previous section, we develop a theoretical model 

of the parallel efficiency of local interaction problems. 

In particular, we derive a formula for the parallel effi- 

ciency in terms of the parallel grain size (the size of the 

subregion that is assigned to each processor), the speed 

of the processors, and the speed of the communication 

network. Our analysis is based on two assumptions: (i) 

the computation is completely parallelizable, and (ii) the 

communication does not overlap in time with the com- 

putation. The first assumption is valid for local inter- 

action problems, and the second assumption is valid for 

the distributed system that we have implemented. The 

extension of our analysis to situations where communica- 

tion and computation overlap in time is straightforward 

as we shall see afterwards. 

We first examine the relationship between the effi- 

ciency and the processor utilization. We define the ef- 

ficiency / as the speedup S divided by the number of 

processors P. Further, we define the speedup S as the 

ratio T\ /Tp of the total time it takes to solve a problem 

using one processor, denoted T\, divided by the total 

time it takes to solve the same problem using P proces- 

sors, denoted Tp. In other words, we have the following 

expression, 

(7) ' = f 7i 

PTD 

We define the processor utilization g as the fraction of 

time spent for computing, denoted Tca;c, divided by the 

total time spent for solving a problem which includes 

both computing and waiting for communication to com- 

plete. Also, we use the simplifying assumption that the 

communication and the computation do not overlap in 

time, so that we define Tcom as the time spent for com- 

munication without any computation occurring during 

this time. Thus, we have the following expression, 

T / m      \ -i 
1 calc 

(9) 

g = —-— =  I 1 + =— (8) 
■1 calc    i    -I com \ -* calc / 

To compare / and g, we note that the values of both / 

and g range between the following limits, 

0<g <1 

0</<l 

for the worst case and the best case respectively. We ex- 

pect that high utilization g corresponds to high parallel 

efficiency /; however, this depends on the problem that 

we are trying to compute in parallel. 

In the special case of a problem that is completely 

parallelizable, the processor utilization g is exactly equal 

to the parallel efficiency /. To show this, we use the 

following relation as the definition of a problem being 



completely parallelizable, 

-* calc   — 
7i 

(10) 

Then, we also use the assumption that communication 

and computation do not overlap in time, so that we can 

obtain a second relation, 

(Tcalc  + Tc com I   —   *■ p 111) 

By substituting equations 10 and 11 into equation 7, 

and comparing with equation 8, we arrive at the desired 

result that the parallel efficiency is exactly equal to the 

processor utilization, 

/ = 9 =     1 + 
Tfl 

Teal, 
(12) 

We have derived the above equation under the assump- 

tion that communication and computation do not over- 

lap in time. If this assumption is violated in a practical 

situation, then the communication time Tcom should be 

replaced with a smaller time interval, the effective com- 

munication time. This modification does not change the 

conclusion / = g, it simply gives higher values of effi- 

ciency and utilization. 

To proceed further, we need to find how the ratio 

Tcom/Tcaic depends on the size of the subregion. First, 

we observe that Tca\c is proportional to the size of the 

subregion. If N is the size of the subregion (the num- 

ber of parallel nodes that constitute one subregion), we 

write, 

•* calc   — 
N 

U calc 
(13) 

where Ucau is a constant, the computational speed of the 

processors for the specific problem at hand. In a similar 

way, we seek to find a formula for the communication 

time Tcom in terms of the size of the subregion that is 

assigned to each processor. As a first model, we write 

the following simple expression, 

Nc 
Tet 

Uc, 
(14) 

where Nc is the number of communicating nodes in each 

subregion, namely the outer surface of each subregion. 

The factor Ucom represents the speed of the communica- 

tion network. 

For analysis purposes, we want to know exactly how 

Nc varies with the size of the subregion N. We consider 

the geometry of a subregion in two dimensions. We can 

see that the boundary of a subregion is one power smaller 

than the volume expressed in terms of the number of 

nodes. For example, if we consider square subregions 

of size l? nodes, the enclosing boundary contains 4L 

nodes, and the ratio of communicating nodes to the total 

number of nodes per subregion can be as large as 4/L. 

In general, we have the following relations, 

Nc  = mN1/2 (15) 

Nc  = mN2'3 (16) 

in two and three dimensions respectively, where the con- 

stant m depends on the geometry of the decomposition. 

For example, if the decomposition of a problem is (Px 1), 

then m = 2 because each subregion communicates with 

its left and right neighbors only. The following table 

gives m for a few decompositions which we use in our 

performance measurements in section 7, 

P x 1 2x2 3x3 4x4 5x4 

m 2 2 3 4 4 

If we introduce the above formulas for Nc and m into 

equation 12, we obtain the following expressions for the 

parallel efficiency of a local interaction problem in two 

and three dimensions respectively, 

/ =   fi + AT-^^iy1 (17) 

/ 1 + JV
_1/3 

Uc 

mUc, 

Uc 

(18) 

13 

The above equations show that if N is sufficiently large 

compared to the term mUCom/Ucaic, then we can achieve 

high parallel efficiency. 

A few comments are in order. First, we must remem- 

ber that in practice we can not increase arbitrarily the 

size of the subregion per processor in order to achieve 

high efficiency. This is because the computation may 

take too long to complete, and because the memory of 

each workstation is limited. In our present system, each 

workstation has maximum memory 32 megabytes, and 

a large part of this memory is taken by other programs, 

and other users. A practical upper limit of how much 

memory we can use per workstation is 15 megabytes, 

which corresponds to 3002 fluid nodes in 2D simulations 

and 403 fluid nodes in 3D simulations. 

In 2D simulations the upper limit of 3002 fluid nodes 

per subregion is large enough to achieve high efficiency. 

As we saw in figure 5, high efficiency is achieved when the 

subregion per processor is larger than 1002 fluid nodes. 

By contrast, in 3D simulations the upper limit of 403 

fluid nodes per subregion is too small to achieve high 
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Figure 12: Theoretical model of parallel efficiency for 

two-dimensional subregions of size N. 

efficiency. Further, the efficiency depends on the size of 

the subregion as iV-1/3 in 3D versus N~ll2 in 2D. as we 

can see from equations 17 and 18. This means that the 

size of the subregion N must increase much faster in 3D 

than in 2D to achieve similar improvements in efficiency. 

Because of this fact, achieving high efficiency in 3D sim- 

ulations is much more difficult than in 2D simulations. 

Having described the basic idea behind our model of 

parallel efficiency, we now discuss a small improvement 

of our model. We observe that in the case of a shared- 

bus network the communication time Tcom must depend 

on the number of processors that are using the network. 

In particular, if we assume that all the processors ac- 

cess the shared-bus network at the same time, then the 

communication time Tcom must increase linearly with 

the number of processors. Based on this assumption, we 

rewrite equation 14 for Tcom as follows, 

mNll2{P-\) 
T        — -* com    — 

Vc, 
(19) 

for the case of two dimensional problems. The constant 

Veom is the speed of communication when there are only 

two processors sharing the network. Using the new ex- 

pression for Tcom, the equation of parallel efficiency in 

two dimensions becomes as follows, 

m Ucalc 
/ =   (l + N~1/2(P-1)- 

Vcl 

(20) 

To verify our model, below we compare the efficiency 

that is predicted by our model against the experimen- 

tally measured efficiency of section 7. 
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Figure 13: Theoretical model of parallel efficiency which 

assumes that the communication time increases linearly 

with the number of processors. 

Figure 12 plots the efficiency / versus JV1/2 accord- 

ing to formula 20, using Ucaic/Vcom — 2/3. The four 

curves marked with triangle, cross, square, circle corre- 

spond to different numbers of processors P = 4, 9,16, 20 

and also different values of m = 2,3,4,4 which depends 

on the geometry of the decomposition as we explained 

earlier. A comparison between the predicted efficiency 

shown in figure 12 and the experimentally measured ef- 

ficiency shown in figure 5 reveals good agreement when 

the subregion per processor is larger than N > 1002. 

However, for small subregions, N < 1002, the predicted 

efficiency is too high compared to the experimental ef- 

ficiency. The reason for this is that messages in a lo- 

cal area network have a large overhead which becomes 

important when the messages are small, namely, when 

the subregion per processor is smaller than N < 1002 

fluid nodes. The overhead of small messages leads to a 

smaller communication speed VCOm, an<i a correspond- 

ing decrease of efficiency /. We have not attempted to 

model the overhead of small messages here. 

Another way of examining the validity of equation 

equation 20 is to plot the efficiency / versus the num- 

ber of processors P while keeping all other parameters 

constant. In figure 13, we plot the efficiency of 2D sim- 

ulations according to equation 20 using JV = 1252. We 

set Ucaic/VCom = 2/3 as we did in figure 12, and we set 

m = 2 because each subregion communicates with its left 



and right neighbors only. For comparison purposes, we 

also plot the efficiency of 3D simulations, using N = 253 

and m = 2. The computational speed is half as large 

in 3D than in 2D, and the communication of each fluid 

node in 3D requires 5/3 as much data as in 2D. Taking 

these numbers into account, we can write the following 

expression for the parallel efficiency of 3D simulations, 

r     \_1 
mLcaU\ ^ 

\ 0 V -on 

where the factor 5/6 arises because we use the 2D values 

of Ucaic and Vcom which give Ucaic/Vcom  = 2/3. 
We now compare the predicted efficiency shown in fig- 

ure 13 against the experimentally measured efficiency 

shown in figure 9. We can see that there is good agree- 

ment. Also, the overhead of small messages, which we 

mentioned earlier, does not affect the predicted efficiency 

in this case because the subregion per processor is large, 

N - 1252 in 2D, and 253 in 3D. Overall, we find reason- 

able agreement between the theoretical model and the 

experimental measurements of parallel efficiency. The 

model can be improved further, if desired, by employing 

more sophisticated expressions for the communication 

time Tcom in equation 19 which describes the behavior 

of the shared-bus Ethernet network. 

9    Conclusion 

A promising approach of simulating fluid dynamics on 

a cluster of non-dedicated workstations has been pre- 

sented. The approach is particularly good for simulating 

subsonic flow which involves both hydrodynamics and 

acoustic waves. A parallel simulation system has been 

developed and applied to solve a real problem, the sim- 

ulation of air flow inside wind musical instruments. 

The system achieves concurrency by decomposing the 

flow problem into subregions, and by assigning the sub- 

regions to parallel subprocesses on different worksta- 

tions. The use of explicit numerical methods leads 

to minimum communication requirements. The paral- 

lel processes automatically migrate from busy hosts to 

free hosts in order to exploit the unused cycles of non- 

dedicated workstations, and to avoid disturbing the reg- 

ular users. Typical simulations achieve 80% parallel ef- 

ficiency (speedup/processors) using 20 HP-Apollo work- 

stations. 
Detailed measurements of the parallel efficiency of 2D 

and 3D simulations have been presented, and a the- 

oretical model of efficiency has been developed which 
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fits closely the measurements. The measurements show 

that a shared-bus Ethernet network with 10Mbps peak 

bandwidth (megabits per second) is sufficient for two- 

dimensional simulations of subsonic flow, but is limited 

for three-dimensional simulations. It is expected that 

the use of new technologies in the near future such as 

Ethernet switches. FDDI and ATM networks will make 

practical three-dimensional simulations of subsonic flow 

on a cluster of workstations. 
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Appendix 

The appendix describes certain aspects of our dis- 

tributed system that are not vital for a general reading, 

but are useful to someone who is interested in imple- 

menting a distributed system similar to ours. 

A    Un-synchronization of processes 

The synchronization between parallel processes that we 

discussed in section 4.2 can be violated in situations such 

as the following. Let us suppose that process A stops 

execution after communicating its data for integration 

step N. The nearest neighbor B can integrate up to 

step N + 1 and then stop. Process B can not integrate 

any further without receiving data for integration step 

N + 1 from process A. However, the next to nearest 

neighbor can integrate up to step N + 2, and so on. If 

we consider a two-dimensional decomposition (J x K) 

of a problem, the largest difference in integration step 

between two processes is AiV, 

AN = max(J, K) - 1 (22) 

assuming that neighbors depend on each other along the 

diagonal direction (this corresponds to a full stencil of 
local interactions as shown in figure 4). If neighbors 

depend on each other along the horizontal and verti- 

cal directions only (this is the star stencil of figure 4), 

then the largest difference in integration step between 

two processes becomes, 

AiV = (J - 1) + (K - 1) (23) 



These worst cases of un-synchronization are important 

when we consider the migration of processes because a 

precise global synchronization is required then, as is ex- 

plained in section 5. 

B    Synchronization algorithm 

The synchronization algorithm that is used during pro- 

cess migration (see section 5) is as follows. First, a syn- 

chronization request is sent to all the processes by means 

of a UNIX interrupt. In response to the request, every 

process writes the current integration time step into a 

shared file (using file locking semaphores, and append 

mode). Then, every process examines the shared file to 

find the largest integration time step Tmax among all the 

processes. Further, every process chooses (Tmax+ 1) to 

be the upcoming synchronization time step, and contin- 

ues running until it reaches this time step. It is impor- 

tant that all the processes can reach the synchronization 

time step, and that no process continues past the syn- 

chronization time step. 

The above algorithm finds the smallest synchroniza- 

tion time step that is possible at any given time, so that 

a pending migration can take place as soon as possible. 

C     Order of communication 

A minor efficiency issue with regard to TCP/IP commu- 

nication (see section 4.2) is the order in which the neigh- 
boring processes communicate with each other. One 

way is for each parallel process to communicate with 

its neighbors on a first-come-first-served basis. An alter- 

native way is to impose a strict ordering on the way the 

processes communicate with each other. For example, we 

consider a one-dimensional decomposition (J x 1) of a 

problem with non-periodic outer-boundaries where each 

process receives data from its left neighbor before it can 

send data to its right neighbor. Then, the leftmost pro- 

cess No. 1 will access the network first, and the nearest- 

neighbor process No. 2 will access the network second, 

and so on. The intent of such ordering is to pipeline the 

messages through the shared-bus network in a strict fash- 

ion in an attempt to improve performance. However, it 

does not work very well if one process is delayed because 

all the other processes are delayed also. Small delays 

are inevitable in time-sharing UNIX systems, and strict 

ordering amplifies them to global delays. By contrast, 

asynchronous first-come-first-served communication al- 

lows the computation to proceed in those processes that 

are not delayed, and better performance is achieved over- 

all. In our system we implement first-come-first-served 

communication using the "select" system call of sockets 

(see UNIX manual). 

D    Other communication mechanisms 

In section 4.2 we described the communication mecha- 

nism of our system which is based on the TCP/IP pro- 

tocol and sockets. Apart from the TCP/IP protocol, 

another protocol that is popular in distributed systems 

is the UDP/IP protocol, also known as datagrams. The 

UDP/IP protocol is similar to TCP/IP with one major 

difference: There is no guaranteed delivery of messages. 

Thus, the distributed program must check that messages 

are delivered, and resend messages if necessary, which 

is a considerable effort. However, the benefit is that 

the distributed program has more control of the com- 

munication. For example, a distributed program could 

take advantage of knowing the special properties of its 

own communication to achieve better results than the 

TCP/IP standard. Also, another advantage is robust- 

ness in the case of network errors that occur under very 

high network traffic. For example, when TCP/IP fails, 

it is hard to know which messages need to be resent. 

In UDP/IP the distributed program controls precisely 
which data is sent and when, so that the failure problem 

is handled directly. Despite these advantages of UDP/IP 
over TCP/IP, we have chosen to work with TCP/IP be- 
cause of its simplicity. 

E    Performance bugs to avoid 

In section 7 we presented measurements of the perfor- 

mance of our workstations. Here, we note that the per- 

formance of the HP9000/700 Apollo workstations can 

degrade dramatically at certain grid sizes by a factor of 

two or more, but there is an easy way to fix the problem. 

The loss of performance occurs when the length of the 

arrays in the program is a near multiple of 4096 bytes 

which is also the virtual-memory page size. This suggests 

that the loss of performance is related to the prefetching 

algorithm of the CPU cache of the HP9000/700 comput- 

ers. To avoid the loss of performance, we lengthen our 

arrays with 200-300 bytes when their length is a near 

multiple of 4096. This modification eliminates the loss 

of performance. 
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